New Tools Make New Investigations Possible

How and what we "see" depends on the tools we use—be it a telescope, a light microscope, an x-ray machine, or even our eyes. What we see with our eyes is limited to the light which illuminates an object—and how our eyes perceive what

they are seeing. Our eyes can only interpret light in the visible region of the electromagnetic spectrum. But what if you want to peer inside a living cell and look at the molecules which form a cell wall? Or probe the surface of a silicon chip—atom by atom? The Advanced Light Source (ALS) produces light in the wavelengths required for "sight" into the world of molecules and atoms. How this unique light is produced and how it is used is a feat of both innovative engineering and pioneering science.

The Advanced Light Source is a synchrotron which produces light in the form of bright beams of x rays. It does this by generating a hair-thin beam of electrons and accelerating them in a linear accelerator, and then in a booster ring to nearly the speed of light (that is 299,792,000 meters/sec—at that speed you could go around the world almost 7.5 times in a second). The electrons are then "stored" in a 200-meter ring guided by a series of magnets which force them into a curved trajectory. As they travel around the storage ring, the electrons emit synchrotron radiation—energy in the form of photons—which is

directed by specialized optics down 12-meter long beamlines to experiment endstations.

Booster Synchrotron Linac Storage Ring Scale (meters)

The wavelengths of the synchrotron light span the electromagnetic spectrum from infrared to x rays and have just the right size and energy range for examining the atomic and electronic structure of matter. These two kinds of structure determine nearly all the commonly observed properties of matter, such as strength, chemical reactivity, thermal and electrical conductivity, and magnetism. The ability to probe and understand these properties allows us to design materials with particular properties, or understand biological processes inscrutable to visible light.